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The dimensions of databases can be defined based on a variety of concepts, ranging from
the standard tools of principal component analysis to context-biased approaches. The effec-
tive dimensions of databases, in particular the effective dimensions involving continua such
as electron density data, provide a set of important tools for database comparisons and for the
evaluation of some aspects of database quality. The problems associated with database com-
parisons and database mergers, such as those occurring in the process of database unification
in the actual merger of two pharmaceutical companies, provide challenging tasks and oppor-
tunities for data science. Some of the tools for effective dimension reduction and dimension
expansion are reviewed in the context of database quality control and conditions for database
compatibility are presented. A common misconception affecting data sampling techniques for
data quality evaluation is discussed and methods for circumventing the associated sampling
errors are described.

KEY WORDS: QShAR (Quantitative Shape – Activity Relations) databases, database dimen-
sion, reduced dimensions, database quality assessment, sampling errors in high dimensions

1. Introduction

It has been recognized some time ago that with the rapid growth of the volume of
numerical data in the natural sciences and other areas, the mathematical and probabilistic
foundations of statistical methods and their applications have acquired new significance
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see, e.g., [1–9]. The exceptional advances in biochemistry and biology in general have
highlighted the concerns for the reliability of data and the problems associated with the
compatibility of sets of data obtained by theoretical models and by various experimental
means [10–20].

The problems and questions concerning the reliability of data is not limited to
the above areas. In the information age, much of the knowledge accumulated by the
human race is stored in databases of various forms, numerical, textual, graphical, etc.,
and combinations of these see, e.g., [21,22]. The medium of storage is increasingly
becoming electronic or at least accessible by electronic means. Criteria for the validity
of such databases are of increasing importance [23]. In this context, the problems of
data pollution, often of greater significance and impact on society than the pollution of
the actual environment, have been pointed out as fundamentally important aspects of
data management. The quality of scientific, technical, and other databases, as well as
the compatibility of several different databases required for a given task are major topics
within the emerging field of Data Science, and are among those aspects which require
special consideration by the practicing scientists of the new millennium.

The tasks of data quality management involve a wide range of mathematical, sta-
tistical and computational tools if the data themselves are representations of continua,
although much of these continua are also represented by discrete numerical data. Con-
tinuum models are numerous, for example, weather data are ultimately samples taken
from quasi-continua, and such is the case for electron density databases for the inter-
pretation of molecular behavior, especially, within a biochemical context [24–30]. The
focus of this study will be on data quality of electron density databanks, but many of the
conclusions and the proposed approaches are assumed to be valid for other databanks
representing continua.

The goal of many studies involving electron density databanks is to establish corre-
lations between computable molecular properties, ultimately dependent on the molecular
electron densities, and pharmacological activity, toxicity, carcinogenicity, mutagenicity,
or other biochemical effects of molecules.

Some fundamental molecular properties, such as the nature of functional groups
and their typical interactions are natural targets for computational analysis [31–38]. For
this purpose the Quantitative Shape – Activity Relations (QShAR) approach [24,31–58]
is used, (as opposed to the more traditional QSAR, Quantitative Structure – Activity
Relations approach), where the letters Sh refer to the shape of electron density clouds,
alternatively, where the letter h may be regarded as a reference to Planck’s constant
indicating the fact that most of the QShAR methods are based on Quantum Chemistry
computations.

The QShAR method focuses on the fundamental information carrier in molecules:
the electronic density cloud. The shape of the molecule is the shape of its three-
dimensional electron density cloud, that contains far more detailed information than the
conventional structural formulas and stereochemical arrangements of the formal bond-
ing skeleton, used in traditional QSAR. A description of the mathematical and computa-
tional background for the detailed analysis of molecular shape is given in the monograph
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Shape in Chemistry: An Introduction to Molecular Shape and Topology [59], and in the
original references [60–124].

In principle, the three-dimensional shape of the molecular electron density cloud
contains the complete information about the molecule, as it is formally established by
the celebrated Hohenberg–Kohn theorem [125]. A natural question was asked: what
information is carried by local regions of molecules? An early approach to apply the
Hohenberg–Kohn theorem to local regions succeeded only for artificial molecular mod-
els where molecules had boundaries [126], an assumption that does not hold for real
molecules. However, according to a more recent result, a theorem stronger than the
Hohenberg–Kohn theorem also holds for real molecules: any small nonzero volume
piece of the (boundaryless, nondegenerate ground state) electron density of each mole-
cule contains the complete information about the entire molecule [127,128]. This im-
plies that local shape features of the electronic density are also suitable for establishing
shape – activity correlations, a fact that is advantageous if the toxic or other biochemical
activities of large molecules are the subject of the study. Consequently, by establishing
correlations between local or global shape features of the electronic density cloud and
various biochemical properties, including differences in toxic activities, the success of
the QShAR approach has a strong theoretical foundation [129–134].

2. The inherent dimensions and effective dimensions of continuum electron
density databanks

Electron densities are three-dimensional continua, however, in the sense of a formal
continuum data set, the dimension of this data set is infinity of continuum cardinality.
Nevertheless, molecular electron densities exhibit important simplifying features that
allows for significant reduction of dimensionality in the study of such densities, at least
in a practical sense.

As long as the molecule contains only a finite number of nuclei, the electron density
shape analysis can be carried out within an approximate model that can be described by
techniques involving only finite effective dimensions. The simplest indication of this
fact is obtained from the traditional models of stereochemistry focusing on the nuclear
arrangements, and ultimately, on the molecular graph of the bonding pattern. Whereas
the molecular graph does not determine the electron density uniquely, nevertheless, it
does represent a significant constraint on the electron density cloud. In particular, a
formal bond is represented by an edge of the molecular graph, that one may interpret
simply as having the two nuclei indicated as the incident vertices of the graph within a
“short distance” from one another, whereas nuclei not linked by an edge as being “far”
from one another. With such simple “near” and “far” restrictions on the pairwise nuclear
arrangements, typically, there exists only a finite number of energetically stable nuclear
arrangements for the given molecular stoichiometry. That is, the molecular graph in fact
determines much of the essential information about electron densities: if not exclusively
the actual electron density of a given conformer, then the set of finitely many electron
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densities of the set of all the finite number of stable conformations for the given bonding
pattern.

The molecular graph itself is representable by a discrete set of finite number of
integers, and by the above arguments, this set of integers provides sufficient input for
the (ideally exact) machinery of quantum chemistry to determine a finite set of elec-
tron densities of the associated set of stable conformations. By regarding the laws of
quantum mechanics, and by extension, the computer programs of quantum chemistry
as a mere interpretative tool for information processing, the actual molecular graph is
the sole source of specific information for the generation of the entire (finite) set of
electron densities. These finite number of electron densities can be ordered, for ex-
ample, by energy (here we are disregarding cases of degeneracies, where some ad-
ditional ordering principle, such as multiplicity, can still be applied), hence, besides
the dimensionality of the information of the molecular graph, a single additional di-
mension is all that is required. Consequently, an inherent “effective” dimensional-
ity of electron density clouds of molecules of a finite number of nuclei is also fi-
nite.

The finite effective dimensions of individual electron densities imply that electron
density databanks can be regarded as data sets in finite dimensions. This fact has ad-
vantages both in processing and ordering the actual continua of electron density data in
electron density databanks, such as the databank of methyl- and ethyl-substituted pol-
yaromatic hydrocarbon (PAH) electron density fragments, used in toxicity analysis of
various PAH molecules.

3. Effective dimensionality as data quality assessment tool

The effective dimensions of electron density databanks can also be studied by
direct means: the set of electron density features identified within a databank can
be subjected to the standard methods of principal component analysis. Whereas
some electron density shape features are likely to be strongly interdependent, a
representative set of quasi-independent shape features can be determined, and the
dimension of this set can be compared to those of other electron density data-
bases as well as to the inherent dimensions determined by the molecular graph ap-
proach.

If the shape-based effective dimensions and the molecular graph-based dimensions
differ, this is likely to indicate a deficiency of the electron density databank. The degree
of disagreement can be used as a quality measure.

On the other hand, if the shape-based effective dimensions of two electron density
databanks are compared, such a comparison may serve as a tool to assess the compat-
ibility of the qualities of the two databanks. The difference between the shape-based
effective dimensions of the two databanks is a measure of the quality-compatibility of
the two electron density databanks.
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4. A counter-intuitive aspect of sampling strategies in higher dimensions

In data sets of finite effective dimensions, especially in dimensions higher than
three, some important counterintuitive features may influence the interpretation of the
results.

One important problem is associated with two of the typical sampling techniques
used in higher dimensional databanks. In one approach, the grid-based sampling method,
the data points are selected from a hypercube of suitably chosen edge length, with edges
aligned with the coordinate directions representing the (quasi-) independent principal
components. In another approach, a reference data point is used, and data samples are
taken from the interior of a hypersphere of a suitable radius, centered on the reference
data point.

We may easily recognize the associated counterintuitive feature of the two sam-
pling techniques if we consider unit hypercubes (hypercubes of unit edge lengths) and
unit hyperspheres (hyperspheres of unit radii), respectively.

Consider the volume ratios of the unit hyperspheres and the unit hypercubes. By
definition, the latter object has a d-dimensional volume equal to 1 in all dimensions d,
hence the ratio is in fact the d-dimensional volume of the hypersphere of dimension d,
denoted by β(d).

This latter volume can be computed [135,136] as

β(d) = πd/2

�(d/2+ 1)
(1)

where the gamma function is given by

�(x) =
∫ 1

0

{
ln(1/u)

}x−1
du. (2)

Alternatively, using the int(y) function as the integer part of the number y, and the
double factorial d!! of odd only or even only factors, one may write the concise formula

β(d) = 2int((d+1)/2)π int(d/2)

d!! . (3)

For example, for the first seven dimensions, d = 1, 2, 3, 4, 5, 6, and 7, these num-
bers β(d) are 2, π , (4/3)π , π2/2, 8π2/15, π3/6, and 16π3/105, respectively.

The actual numerical values, listed in table 1 up to dimensions 20, also shown
as a plot in figure 1, are interesting. The function β(d) initially increases and has a
maximum at dimension 5, and then it decreases monotonically, becomes less than one
at dimension 13, and converges to zero in high dimensions! That is, the 13-dimensional
unit hypersphere has a volume smaller than that of the 13-dimensional unit hypercube
(dimension 13 is the smallest dimension for this to occur), and in higher dimensions the
volume of the hypersphere becomes negligibly small compared to the volume element,
that is, to the volume of the unit hypercube! This is a surprising result if one is used to
the idea that the unit circle has an area more than three times greater than the unit square,
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Table 1
Unit sphere volumes in various dimensions.

Dimension Sphere volume

0 1.0000000000000
1 2.0000000000000
2 3.1415926535898
3 4.1887902046667
4 4.9348022002626
5 5.2637890136135
6 5.1677127796068
7 4.7247659699263
8 4.0587121259528
9 3.2985089023616

10 2.5501640395129
11 1.8841038791206
12 1.3352627686256
13 0.91062875462715
14 0.59926452920089
15 0.38144328074699
16 0.23533063030508
17 0.1409811068849
18 0.082145886589997
19 0.046621601018096
20 0.025806891382638

and the unit sphere in three dimensions has a volume more than four times greater than
the unit cube.

This observation has implications on the choice of data sampling in high dimen-
sions. If random sampling is taken from a unit hypersphere drawn about a distinguished
reference data point, then this sampling, in fact, accesses only a very small part of the
multidimensional space, if compared to the volume accessed when sampling is taken
from a unit hypercube.

If dissimilarity measures of data points taken from a sampling accessing only a unit
hypersphere are large, then this may be regarded as a significant result, since significant
dissimilarities already show up if taken from a more limited range of sample. On the
other hand, if dissimilarity measures are small even if the data points are taken from
a sampling accessing a unit hypercube, then this is a more reliable conclusion that a
similar result obtained from a sampling taken from the more restricted unit hypersphere.

5. Summary

The interpretation of statistical results based on sampling strategies in various di-
mensions is influenced by the perception of the relative volumes of unit cubes (often
thought of as blocks making up the sample space) and unit spheres (often regarded as
neighborhoods of certain distinguished points in the space). The relative volumes have



P.G. Mezey et al. / Dimension concepts and reduced dimensions 381

Figure 1. Plot of unit sphere volumes in various dimensions.

different significance in different dimensions. If dimension reduction is successfully ac-
complished without significant loss of relevant information, as it is possible in certain
shape analysis studies of potential energy hypersurfaces and molecular electron density
maps, then a reassessment of the sampling strategy may be required to account for the
changing relative volume conditions.
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